Run 15 FMS Inclusive and Diffractive EM-jet A_{N} update

Xilin Liang
UCR
Jan. 11, 2023
*Thanks for suggestions from Carl Gagliardi

General Information

- Data set: run 15 pp transverse $\sqrt{s}=200 \mathrm{GeV}$,fms stream
- (production_pp200trans_2015)
- Production type: MuDst ; Production tag: P15ik
- Trigger for FMS : FMS small board sum, FMS large board sum and FMS-JP.
- EM-jet reconstruction: Anti- K_{T} algorithm with $\mathrm{R}=0.7$
- EM-jet: the jet reconstructed using only photons (FMS point).

Diffractive process channels

2 diffractive channels are considered.

Require:

- Contain only 1 west RP track.
- Either no east side RP track or only 1 east side RP track.
- sum of west side tracks energy (west side proton + EM Jet) less than beam energy

BEMC

Event selection and corrections

- FMS
- 8 Triggers, veto on FMS-LED
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015, Anti-kT, R<0.7, FMS point energy $>2 \mathrm{GeV}, \boldsymbol{p}_{\boldsymbol{T}}>\mathbf{1 G e V} / \mathrm{c}$, trigger $\boldsymbol{p}_{\mathrm{T}}$ threshold cut, FMS point as input.
- Apply energy correction.
- Only allow acceptable beam polarization (up/down).
- Vertex (Determine vertex z priority according to TPC , VPD, BBC.)
- Vertex $|z|<80 \mathrm{~cm}$

Corrections:

EM-jet energy correction and Underlying Event correction

- Roman Pot and Diffractive process: (Diffractive EM-jet A_{N} analysis only)
- Acceptable cases: (in next slide)

1. Only 1 west RP track + no east RP track
2. Only 1 east RP track + only 1 west RP track

- RP track must be good track:
a) Each track hits >6 planes
b) $-2<\theta_{\mathrm{X}}<2 \mathrm{mrad}, 1.5<\left|\theta_{\mathrm{y}}\right|<4.5 \mathrm{mrad}$
- Sum of west RP track energy and all EM Jet energy (see detail in table)

X_{F}	E sum Cut
$0.1-0.15$	$E_{\text {sum }}<108 \mathrm{GeV}$
$0.15-0.2$	$E_{\text {sum }}<108 \mathrm{GeV}$
$0.2-0.25$	$E_{\text {sum }}<110 \mathrm{GeV}$
$0.25-0.3$	$E_{\text {sum }}<110 \mathrm{GeV}$
$0.3-0.45$	$E_{\text {sum }}<115 \mathrm{GeV}$

- BBC ADC sum cuts: (Diffractive EM-jet A_{N} analysis only)
- West Large BBC ADC sum < 60 and West Small BBC ADC sum < 100

Apply the trigger threshold p_{T} cut

- The EM-jet p_{T} based on the trigger threshold are listed as follows, with 15% increase. Consistent with inclusive EM-jet A_{N} analysis

Trigger name	Trigger ID	15\% increase p_{T} cut [GeV]
FMS-JP0	$480810 / 480830$	1.84
FMS-JP1	$480809 / 480829$	2.76
FMS-JP2	$480808 / 480828$	3.68
FMS-sm-bs1	480801	1.26
FMS-sm-bs1	$480821 / 480841$	1.15
FMS-sm-bs2	$480802 / 480822$	1.84
FMS-sm-bs3	480803	2.53
FMS-sm-bs3	$480823 / 480843$	2.18
FMS-Ig-bs1	480804	1.26
FMS-Ig-bs1	$480824 / 480844$	1.15
FMS-Ig-bs2	$480405 / 480425$	1.84
FMS-Ig-bs3	$480406 / 480426$	2.76

Run 15 diffractive EM-jet A_{N} results

- Cross-ratio method is used to extract the A_{N} results.
- Totally show $4 x_{F}$ bins, due to the limited statistics.
- $0.1<\left|x_{F}\right|<0.2,0.2<\left|x_{F}\right|<0.25,0.25<\left|x_{F}\right|<0.3,0.3<\left|x_{F}\right|<0.45$
- All photon multiplicity EM-jets
- About 1.9 sigma for non-zero A_{N}

Comparison between inclusive and diffractive EM-jet A_{N}

- $\boldsymbol{p}_{\boldsymbol{T}}>\mathbf{1} \mathrm{GeV} / \mathrm{c}$, only considering photon multiplicity 1 or $\mathbf{2}$
- T-test are applied to investigate non-consistency between two analyses.

One sample T-test

- Do the one sample T-test for inclusive and diffractive EM-jet A_{N} to check if they are consistent.
- Compare only EM-jet with all photons (only statistical uncertainty)
- Check for $p_{T}>1 \mathrm{GeV} / \mathrm{c}$ with trigger threshold cut

One sample T-test

- Do the one sample T-test for inclusive and diffractive EM-jet A_{N} to check if they are consistent.
- Compare only EM-jet with 1 or 2 photons
- About 1 sigma non-consistency are obtained for both analyses.

Inclusive EM-jet A_N sta	sys		Diffractive EM-jet A_N	sta	sys	d = Inclusive EM-jet A_N - Diffractive EM-jet A_N		d/sta+sys	
0.00642878	0.00437334	0.00032144	-0.0313224	0.0518561	0.0205252		0.03775118	0.72542358	0.67482057
0.00986271	0.000886606	0.00049314	-0.079678	0.0491682	0.0708062		0.08954071	1.82081419	1.03864218
0.0172103	0.000651766	0.00086052	-0.0281373	0.0507298	0.116416		0.0453476	0.8938308	0.35708584
0.0213545	0.000659429	0.00106773	-0.0948827	0.0438875	0.0255548		0.1162372	2.64822743	2.28809159

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n-1}}
$$

Where \bar{x} is the average of the A_N difference over uncertainty (d/uncertainty), μ is 0 for this hypothesis, s is standard derivation, n is number of data points.

				Results		d/sta		d/sta+sys
				t		2.95561745		2.23067249
				P		<10\%		<20\%
cum. prob	$t_{\text {. } 50}$	$t_{.75}$	$t_{\text {.80 }}$	$t_{\text {. }}^{85}$	$t_{\text {. } 90}$	$t_{\text {. } 95}$	t_{9}	
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.02	
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.0	
df								
1	0.000	1.000	1.376	1.963	3.078	6.314	12.7	
2	0.000	0.816	1.061	1.386	1.886	2920	4.30	
3	0.000	0.765	0.978	1.250	1.638	2.353	3.18	

East RP track coincidence study

- Goal: Investigate the possible contribution of east side RP track intact events to inclusive EM-jet A_{N}.
- Data set: 6 fills (as test) from run 15 FMS stream
- Only consider the runs with RP response.
- Event selection:
- EM-jet cuts are same as diffractive EM-jet A_{N} analysis (Slide 4)
- Only 1 east side RP track, and this east RP track must be good track (Slide 4)
- No sum energy cuts and BBC ADC sum cuts.

Fraction of EM-jets with 1 east RP track

- Fraction $=\frac{n_{E M-\text { jets }} \text { with } 1 \text { east } R P \text { track }}{n_{E M-\text { jets }}}$
- The probability of away-side proton intact as diffractive event is highest at low EM-jet p_{T} or large photon multiplicity.
- These are the kinematic regions where the inclusive EM-jet A_{N} is smallest, so the large A_{N} doesn't arise from such diffractive events where the awayside proton remains intact.

Plans for paper proposal and discussion

- We plan to publish the results for inclusive and diffractive EM-jet A_{N} for run 15 FMS data
- We plan to give 2 papers:

1. One PLB paper: focus on diffractive EM-jet A_{N} for run 15 FMS , including Figure in slide 6, as well as the east RP coincidence study and inclusive EM-jet A_{N} separated by photon multiplicity.
2. One PRD paper: focus on inclusive EM-jet A_{N} for run 15 FMS , as well as the comparison with diffractive EM-jet A_{N} for run 15 FMS, including Figure in slide 7.

- Discussion:

1. Is one paper proposal fine for both papers ; or we need to do separate paper proposal?

Conclusion

- Run 15 inclusive and diffractive EM-jet A_{N} analyses are close to finalized and start to proceed to paper proposal and preparation.
- Diffractive EM-jet A_{N} analysis systematic uncertainties might need to better considered.

Back up

Systematic uncertainty for residual background

- Systematic uncertainties for residual background effect mainly come from the cut for selecting signal from background.
- Energy sum cut: change the energy sum cut to check the uncertainty.
- Small BBC ADC sum cut: change 100 to 105
- Large BBC ADC sum cut: change 60 to 65
- Ring of fire
- Trigger: fms-sm-bs3

	E sum cut for X_{F}	
$0.1-0.15$	$E_{\text {sum }}<108 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<112 \mathrm{GeV}$
$0.15-0.2$	$\mathrm{E}_{\text {sum }}<108 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<112 \mathrm{GeV}$
$0.2-0.25$	$\mathrm{E}_{\text {sum }}<110 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<114 \mathrm{GeV}$
$0.25-0.3$	$\mathrm{E}_{\text {sum }}<110 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<114 \mathrm{GeV}$
$0.3-0.45$	$\mathrm{E}_{\text {sum }}<115 \mathrm{GeV}$	$\mathrm{E}_{\text {sum }}<120 \mathrm{GeV}$

Inclusive EM-jet A_{N} result

- Inclusive EM-jet A_{N} result with EM-jet $p_{T}>1 \mathrm{GeV} / \mathrm{c}$ cut.

Transverse single spin asymmetry $\left(\mathrm{A}_{N}\right)$ calculation

- We use cross ratio method to calculate the diffractive EM Jet A_{N} at FMS.

- Plot A_{N} as a function of x_{F} or $\mathrm{p}_{\mathrm{T}}\left(x_{F}=\frac{E_{\text {EM jet }}}{E_{\text {Beam }}}\right)$
- Divide full ϕ range $[-\pi,+\pi]$ into 16 bins.

Diffractive EM-jet $2 \mathrm{GeV} / \mathrm{c} p_{T}$ cut

- If we apply $2 \mathrm{GeV} p_{T}$ cut for diffractive EM-jet, A_{N} for $x_{F}<0.2$ are unable to extract. Therefore, we look at $3 x_{F}$ bins: $0.2<x_{F}<0.25$, $0.25<x_{F}<0.3,0.3<x_{F}<0.45$.

Low photon multiplicity A_{N} and comparison with inclusive EM-jet A_{N}

- Diffractive EM-jet $2 \mathrm{GeV} / \mathrm{c} p_{T}$ cut as well as trigger threshold cuts are applied, which are same p_{T} cut as inclusive EM-jets.
- Low photon multiplicity: 1 or 2 photons in EM-jet (compare with inclusive results)

