# Run 15 FMS Inclusive and Diffractive EM-jet A<sub>N</sub> update

Xilin Liang

UCR

Jan. 11, 2023

\*Thanks for suggestions from Carl Gagliardi

#### General Information

- Data set: run 15 pp transverse  $\sqrt{s} = 200 \text{ GeV}$  ,fms stream
  - (production\_pp200trans\_2015)
- Production type: MuDst ; Production tag: P15ik
- Trigger for FMS : FMS small board sum, FMS large board sum and FMS-JP.
- EM-jet reconstruction: Anti- $k_T$  algorithm with R=0.7
  - EM-jet: the jet reconstructed using only photons (FMS point).

#### Diffractive process channels

2 diffractive channels are considered.



#### Require:

- Contain only 1 west RP track.
- Either no east side RP track or only 1 east side RP track.
- sum of west side tracks energy (west side proton + EM Jet) less than beam energy

### Event selection and corrections

#### • FMS

- 8 Triggers, veto on FMS-LED
- bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking)
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 2 GeV,  $p_T > 1$  GeV/c, trigger  $p_T$  threshold cut, FMS point as input.
- Apply energy correction.
- Only allow acceptable beam polarization (up/down).
- Vertex (Determine vertex z priority according to TPC , VPD, BBC.) EM-jet e
  - Vertex  $|z| < 80 \ cm$
- Roman Pot and Diffractive process: (Diffractive EM-jet  $A_N$  analysis only)
- Acceptable cases: (in next slide)
  - 1. Only 1 west RP track + no east RP track
  - 2. Only 1 east RP track + only 1 west RP track
  - RP track must be good track:
  - a) Each track hits > 6 planes
  - b)  $-2 < \, \theta_X < 2 \, \text{mrad}$  ,  $1.5 < |\theta_y| < 4.5 \, \text{mrad}$
  - Sum of west RP track energy and all EM Jet energy (see detail in table)

#### - BBC ADC sum cuts: (Diffractive EM-jet $A_{\scriptscriptstyle N}$ analysis only)

• West Large BBC ADC sum < 60 and West Small BBC ADC sum < 100

#### **Corrections:**

EM-jet energy correction and Underlying Event correction

| x <sub>F</sub> | E sum Cut                  |
|----------------|----------------------------|
| 0.1 - 0.15     | E <sub>sum</sub> < 108 GeV |
| 0.15 - 0.2     | E <sub>sum</sub> < 108 GeV |
| 0.2 - 0.25     | E <sub>sum</sub> < 110 GeV |
| 0.25 - 0.3     | E <sub>sum</sub> < 110 GeV |
| 0.3 – 0.45     | E <sub>sum</sub> < 115 GeV |

#### Apply the trigger threshold $p_T$ cut

• The EM-jet  $p_T$  based on the trigger threshold are listed as follows, with 15% increase. Consistent with inclusive EM-jet  $A_N$  analysis

| Trigger name | Trigger ID      | 15% increase $p_T$ cut [GeV] |
|--------------|-----------------|------------------------------|
| FMS-JP0      | 480810 / 480830 | 1.84                         |
| FMS-JP1      | 480809 / 480829 | 2.76                         |
| FMS-JP2      | 480808 / 480828 | 3.68                         |
| FMS-sm-bs1   | 480801          | 1.26                         |
| FMS-sm-bs1   | 480821 / 480841 | 1.15                         |
| FMS-sm-bs2   | 480802 / 480822 | 1.84                         |
| FMS-sm-bs3   | 480803          | 2.53                         |
| FMS-sm-bs3   | 480823 / 480843 | 2.18                         |
| FMS-lg-bs1   | 480804          | 1.26                         |
| FMS-lg-bs1   | 480824 / 480844 | 1.15                         |
| FMS-lg-bs2   | 480405 / 480425 | 1.84                         |
| FMS-lg-bs3   | 480406 / 480426 | 2.76                         |

5

### Run 15 diffractive EM-jet $A_N$ results

- Cross-ratio method is used to extract the  $A_N$  results.
- Totally show 4  $x_F$  bins, due to the limited statistics.
  - + 0.1  $< |x_F| < 0.2$  , 0.2  $< |x_F| < 0.25$  , 0.25  $< |x_F| < 0.3$  , 0.3  $< |x_F| < 0.45$
- All photon multiplicity EM-jets
- About 1.9 sigma for non-zero  $A_N$



## Comparison between inclusive and diffractive EM-jet $A_N$

- $p_T > 1$  GeV/c, only considering photon multiplicity 1 or 2
- T-test are applied to investigate non-consistency between two analyses.



#### One sample T-test

- Do the one sample T-test for inclusive and diffractive EM-jet A<sub>N</sub> to check if they are consistent.
  - Compare only EM-jet with all photons (only statistical uncertainty)
- Check for  $p_T > 1 \ GeV/c$  with trigger threshold cut

|                          |             | Diffractive EM-jet |           | d = Inclusive EM-jet A_N | -            | Results | d/d_sta     |
|--------------------------|-------------|--------------------|-----------|--------------------------|--------------|---------|-------------|
| Inclusive EM-jet A_N sta | it          | A_N                | stat      | Diffractive EM-jet A_N   | d/stat       | moon    | 1 2100207   |
| 0.00237253               | 0.00278996  | -0.0261313         | 0.0509407 | 0.02850383               | 3 0.55871191 | mean.   | 1.5190297   |
| 0.00416809               | 0.000606968 | -0.0622117         | 0.0480207 | 0.06637979               | 9 1.38220576 | Stdev   | 0.92778341  |
| 0.00892035               | 0.000439491 | -0.027319          | 0.0496243 | 0.03623935               | 5 0.73024564 | count:  | 4           |
| 0.0118818                | 0.000442939 | -0.0992779         | 0.0426701 | 0.1111597                | 2.60495549   |         | 2 462 45660 |
|                          |             |                    |           |                          |              | t       | 2.46245668  |
|                          |             |                    |           |                          |              | Р       | < 10%       |

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n-1}}$$

Where  $\bar{x}$  is the average of the A\_N difference over uncertainty (d/stat),  $\mu$  is 0 for this hypothesis, s is standard derivation, n is number of data points.

### t Table

| cum. prob | t.50  | t.75  | t.80  | t .85 | t.90  | t .95 | t .97 |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| one-tail  | 0.50  | 0.25  | 0.20  | 0.15  | 0.10  | 0.05  | 0.02  |
| two-tails | 1.00  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10  | 0.05  |
| df        |       |       |       |       |       |       |       |
| 1         | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.7  |
| 2         | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2 920 | 4.303 |
| 3         | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.18  |

#### One sample T-test

- Do the one sample T-test for inclusive and diffractive EM-jet  $A_N$  to check if they are consistent.
  - Compare only EM-jet with 1 or 2 photons
- About 1 sigma non-consistency are obtained for both analyses.

|                      |             |            |                        |           |           | d = Inclusive EM-jet<br>A_N - Diffractive EM-jet |           |              |
|----------------------|-------------|------------|------------------------|-----------|-----------|--------------------------------------------------|-----------|--------------|
| Inclusive EM-jet A_N | sta         | sys        | Diffractive EM-jet A_N | sta       | sys       | A_N                                              | d/sta     | d/sta+sys    |
| 0.00642878           | 0.00437334  | 0.00032144 | -0.0313224             | 0.0518561 | 0.0205252 | 0.03775118                                       | 0.7254235 | 8 0.67482057 |
| 0.00986271           | 0.000886606 | 0.00049314 | -0.079678              | 0.0491682 | 0.0708062 | 0.08954071                                       | 1.8208141 | 9 1.03864218 |
| 0.0172103            | 0.000651766 | 0.00086052 | -0.0281373             | 0.0507298 | 0.116416  | 0.0453476                                        | 0.893830  | 8 0.35708584 |
| 0.0213545            | 0.000659429 | 0.00106773 | -0.0948827             | 0.0438875 | 0.0255548 | 0.1162372                                        | 2.6482274 | 3 2.28809159 |
|                      |             |            |                        |           |           |                                                  |           |              |

|                                                                          |                                  |                              |                              |                                  | Res                          | ults                                     | d/s                                      | ta                                 | d/sta+sys  |
|--------------------------------------------------------------------------|----------------------------------|------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------|------------------------------------------|------------------------------------|------------|
| $\bar{x} - \mu$                                                          |                                  |                              |                              |                                  | t                            | t                                        | 2.9556                                   | 1745                               | 2.23067249 |
| $t = \frac{\pi \mu}{c \sqrt{n-1}}$                                       |                                  |                              |                              |                                  | F                            | 5                                        | <10                                      | %                                  | <20%       |
| Where $\bar{x}$ is the average of the<br>A_N difference over uncertainty | t Table<br>cum. prob<br>one-tail | <i>t</i> .50<br>0.50<br>1.00 | <i>t</i> .75<br>0.25<br>0.50 | t <sub>.so</sub><br>0.20<br>0.40 | <i>t</i> .85<br>0.15<br>0.30 | <i>t</i> . <sub>90</sub><br>0.10<br>0.20 | <i>t</i> . <sub>95</sub><br>0.05<br>0.10 | <i>t</i> . <sub>975</sub><br>0.025 |            |
| hypothesis, s is standard<br>derivation, n is number of data             | df<br>1<br>2<br>3                | 0.000<br>0.000<br>0.000      | 1.000<br>0.816<br>0.765      | 1.376<br>1.061<br>0.978          | 1.963<br>1.386<br>1.250      | 3.078<br>1.886<br>1.638 (                | 6.314<br>2.920<br>2.353                  | 12.71<br>4.303<br>3.182            | -          |
| DOILIN                                                                   | •                                |                              |                              |                                  |                              |                                          |                                          |                                    |            |

9

#### East RP track coincidence study

- Goal: Investigate the possible contribution of east side RP track intact events to inclusive EM-jet  $A_N$ .
- Data set: 6 fills (as test) from run 15 FMS stream
  - Only consider the runs with RP response.
- Event selection:
  - EM-jet cuts are same as diffractive EM-jet A<sub>N</sub> analysis (Slide 4)
  - Only 1 east side RP track, and this east RP track must be good track (Slide 4)
  - No sum energy cuts and BBC ADC sum cuts.

#### Fraction of EM-jets with 1 east RP track

• Fraction= $\frac{n_{EM-jets with 1 east RP track}}{1}$ 

n<sub>EM</sub>-jets

- The probability of away-side proton intact as diffractive event is highest at low EM-jet  $p_T$  or large photon multiplicity.
- These are the kinematic regions where the inclusive EM-jet  $A_N$  is smallest, so the large  $A_N$  doesn't arise from such diffractive events where the away-side proton remains intact.



## Plans for paper proposal and discussion

- We plan to publish the results for inclusive and diffractive EM-jet  $A_N$  for run 15 FMS data
- We plan to give 2 papers:
  - 1. One PLB paper: focus on diffractive EM-jet  $A_N$  for run 15 FMS, including Figure in slide 6, as well as the east RP coincidence study and inclusive EM-jet  $A_N$  separated by photon multiplicity.
  - 2. One PRD paper: focus on inclusive EM-jet  $A_N$  for run 15 FMS, as well as the comparison with diffractive EM-jet  $A_N$  for run 15 FMS, including Figure in slide 7.
- Discussion:
  - 1. Is one paper proposal fine for both papers ; or we need to do separate paper proposal?

#### Conclusion

- Run 15 inclusive and diffractive EM-jet  $A_N$  analyses are close to finalized and start to proceed to paper proposal and preparation.
- Diffractive EM-jet  $A_N$  analysis systematic uncertainties might need to better considered.

## Back up

#### Systematic uncertainty for residual background

- Systematic uncertainties for residual background effect mainly come from the cut for selecting signal from background.
  - Energy sum cut: change the energy sum cut to check the uncertainty.
  - Small BBC ADC sum cut: change 100 to 105
  - Large BBC ADC sum cut: change 60 to 65
- Ring of fire
  - Trigger: fms-sm-bs3

|                |                            | E sum cut for              |
|----------------|----------------------------|----------------------------|
| x <sub>F</sub> | E sum Cut original         | systematic                 |
| 0.1 - 0.15     | E <sub>sum</sub> < 108 GeV | E <sub>sum</sub> < 112 GeV |
| 0.15 - 0.2     | E <sub>sum</sub> < 108 GeV | E <sub>sum</sub> < 112 GeV |
| 0.2 - 0.25     | E <sub>sum</sub> < 110 GeV | E <sub>sum</sub> < 114 GeV |
| 0.25 - 0.3     | E <sub>sum</sub> < 110 GeV | E <sub>sum</sub> < 114 GeV |
| 0.3 – 0.45     | E <sub>sum</sub> < 115 GeV | E <sub>sum</sub> < 120 GeV |

#### Inclusive EM-jet $A_N$ result

• Inclusive EM-jet  $A_N$  result with EM-jet  $p_T > 1 GeV/c$  cut.



Transverse single spin asymmetry  $(A_N)$  calculation

• We use **cross ratio** method to calculate the diffractive EM Jet  $A_N$  at FMS.

• Raw 
$$A_N: \varepsilon = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}} \approx pol * A_N * \cos(\phi)$$

• Plot  $A_N$  as a function of  $x_F$ , or  $p_T (x_F = \frac{E_{EM jet}}{E_{Beam}})$ 

• Divide full  $\phi$  range [- $\pi$ , + $\pi$ ] into 16 bins.



#### Diffractive EM-jet 2GeV/c $p_T$ cut

• If we apply 2 GeV  $p_T$  cut for diffractive EM-jet,  $A_N$  for  $x_F < 0.2$  are unable to extract. Therefore, we look at 3  $x_F$  bins:  $0.2 < x_F < 0.25$ ,  $0.25 < x_F < 0.3$ ,  $0.3 < x_F < 0.45$ .



## Low photon multiplicity $A_N$ and comparison with inclusive EM-jet $A_N$

- Diffractive EM-jet 2GeV/c  $p_T$  cut as well as trigger threshold cuts are applied, which are same  $p_T$  cut as inclusive EM-jets.
- Low photon multiplicity: 1 or 2 photons in EM-jet (compare with inclusive results)

